显著性(p)到底是什么?

统计分析 2019. 7. 23. 13:53

现在写论文,使用统计分析的比例越来越高,α值、P值、假设检验这都是些啥?一个小案例带你了解的透透的。

 

假设你是一所大学的院长,你收到一份相关报告显示你的学生每晚平均睡眠时间为6.80小时,而全国大学学生的平均睡眠时间为7.02小时。

此时,学生会主席出于对学生健康的考虑,宣称这项研究的结果证明了减少家庭作业是必须的。另一方面,校长认为这项研究是无稽之谈:“在过去,我们能够每晚睡4个小时就很好了。”

但是,你必须决定这是否应该引起重视,这个问题就可以使用统计学的知识来解决。

 

 

假设检验

 

 

我们要讨论的第一个概念是假设检验(hypothesis testing),这是一种使用数据评估理论的方法。“假设”是指研究人员在进行研究之前对情况的初始信念。这个初始信念被称为备择假设(alternative hypothesis),而相反的被称为零假设(null hypothesis)(也叫原假设)。我们在写论文时绝大多数情况使用的的都是备择假设。具体到例子中就是:

 

备择假设:本校学生的平均睡眠时间低于大学生的全国平均水平。

 

零假设:本校学生的平均睡眠事件不低于大学生的全国平均水平。

 

有了假设检验,我们就可以使用证据来决定是零假设还是备择假设。假设检验有很多种,这里我们将使用z检验。但是,在我们开始测试数据之前,还需要解释另外两个更重要的概念。

 

正态分布

 

第二个概念是正态分布(normal distribution),也称为高斯(Gaussian)或钟形曲线(Bell curve)。正态分布是利用平均数和标准差来定义的数据分布形态,其中平均数用希腊字母μ (mu)表示,决定了分布的位置,标准差用σ (sigma)表示,决定了分布的幅度。

 

正态分布,平均数μ和标准差σ

正态分布的应用原理是根据标准差来评估观测值。我们可以根据与平均值的标准偏差数来确定观测值的异常程度。正态分布具有以下属性:

 

68%的数据与平均值相差±1标准差

95%的数据与平均值相差±2标准差

99.7%的数据与平均值相差±3个标准差

 

如果我们统计量呈正态分布,我们就可以根据与均值的标准偏差来表征任意观测点。例如,美国女性的平均身高是65英寸,标准差为4英寸。如果我们新认识了73英寸高的女性,那么我们可以说她比平均身高高出两个标准差,属于2.5%的最高身高的女性(其中有2.5%的女性要矮于μ-2σ(57英寸),2.5%要高于μ+2σ)。

 

在统计学中,我们不直接说我们的数据与平均值相差两个标准差,而是用z分数来评估,z分数表示观测值与平均值之间的标准差的数量。我们需要利用公式将数据转化为z分数:观测值减去平均值,除以标准差(见下图)。在身高的示例中,我们可以得到朋友的身高的z分数为2。如果我们对所有观测值进行z分数转化,就会得到一个新的分布——标准正态分布,其平均值为0,标准差为1,如图所示:

 

从正态分布(右)到标准正态分布(左)的转换。

 

每次我们进行假设检验时,都需要假定一个检验统计量,在我们的例子中是学生的平均睡眠时间。在z检验中,我们通常假定统计检验量的分布近似正态分布。因为,根据中心极限定理(central limit theorem),从总体数据中获得越多的数据值,这些数据值的平均数则越接近于正态分布。

 

然而,这始终是一个估计,因为真实世界的数据永远不会完全遵循正态分布。假设正态分布能够让我们确定在研究中观察到的结果有多少意义,我们可以观察z分数,z分数越高或越低,结果越不可能是偶然发生,也就越具有意义。为了量化结果的意义,我们需要使用另一个概念。

 

p值和α是个啥

 

最后的核心概念是p值。p值是当零假设为真时所得观察到的结果,或是更为极端的结果出现的概念。这有点令人费解,所以让我们来看一个例子。

 

假设我们要比较美国佛罗里达州和华盛顿州人民的平均智商。我们的零假设是华盛顿的平均智商不高于佛罗里达的平均智商。

 

通过研究发现,华盛顿州的人民智商比佛罗里达州人民智商高2.2,其p值为0.346(大于显著性水平)。这意味着,零假设“华盛顿的平均智商不高于佛罗里达的平均智商”为真,也就是说,华盛顿的智商实际上并没有更高,但是由于随机噪声的影响,仍然有34.6%的概率我们会测量到其智商分数会高出2.2分。之后随着p值降低,结果就更有意义,因为噪声的影响也会越来越小。

 

这个结果是否具有统计意义取决于我们在实验开始之前设定的显著性水平——α(alpha)。如果观察到的p值小于α,则结果在统计学上具有意义。我们需要在实验前选择alpha,因为如果等到实验结束再选择的话,我们就可以根据我们的结果选一个数字来证明结果是显著的,却不管数据真正显示了什么,这是一种数据欺骗的行为。

 

 

α的选择取决于实际情况和研究领域,但最常用的值是0.05,相当于有5%的可能性结果是随机发生的。

 

最后

 

与大多数技术概念一样,统计显著性并不那么复杂,只是许多小概念的集成体,最主要的麻烦来自于学习那些术语!但是一旦你掌握了这些小概念,并将其结合起来,就可以开始应用这些统计概念了。

 

你会发现,当掌握了统计学的基本知识后,你就能够以一种健康的怀疑态度来更好的审视一些研究和信息,你可以看到数据实际上表达了什么,而不是别人告诉你数据意味着什么。或许这就是对付狡猾的政客和公司的最佳策略——通过统计知识的普及与训练来提高公众的质疑能力。

 

本文来自互联网,有删改。

原文链接:https://www.afenxi.com/67076.html

 

 

数据分析

毕业论文的数据分析搞不定吗?数据分析、结果说明、一对一讲解一站式服务

  • SPSS, AMOS软件的数据分析

  • 毕业论文,期末课题数据分析

  • 企业报表,数据化

精彩推荐

► 【下载】SPSS分析教材:中文篇(附下载+数据)

► 【下载】AMOS 24.0 安装包下载

► 【下载】SPSS中文安装包

► 【下载】한글 安装包下载(Windows)

 

posted by Troy C.